Travaux dirigés - Régime triphasé

Exercice - Compensation d'énergie réactive.

Une installation triphasée équilibrée est alimentée par un réseau triphasé $230\,V/400\,V-50\,Hz$. Elle comporte :

✓ Deux moteurs triphasés :

Moteur
$$M_A$$
: $P_A = 3 \, kW - \cos \phi_A = 0.70$; Moteur M_B : $P_B = 5 \, kW - \cos \phi_B = 0.75$.

✓ Six moteurs monophasés 230 V identiques, les caractéristiques nominales d'un de ces moteurs sont :

Moteur M :
$$P_M = 2 kW - \cos \phi_M = 0.80$$
.

- ✓ Quinze lampes $230 \, \text{V}$, absorbant chacune $P_L = 100 \, \text{W}$.
- 1. Faire un schéma de l'installation.

h1	
h2	
h2h3	

- 2. Tous les éléments fonctionnent au régime nominal.
 - **2.1.** Calculer les puissances active \mathbf{P} , réactive \mathbf{Q} et apparente \mathbf{S} de l'installation.

2.2. Calculer l'intensité efficace I du courant dans un fil de ligne.

Travaux dirigés – Régime triphasé

2.3. Calculer le facteur de puissance $\cos \varphi$ de l'installation.
3. On désire relever le facteur de puissance de l'ensemble à $\cos \phi' = 0.93$, pour cela on branche trois
condensateurs en triangle.
3.1. Compléter le schéma de l'installation.
3.2. Calculer la nouvelle puissance apparente S' de l'installation. En déduire le pourcentage de réduction de la puissance apparente.
3.3. Calculer la nouvelle intensité I' efficace du courant dans un fil de ligne ainsi que la nouvelle puissance réactive